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the backward cascade process. This approach can therefore be classed in
the category of statistical deterministic backward cascade models.

Representing the backward cascade by way of a negative viscosity is con-
troversial because the theoretical analyses, such as by the EDQNM model,
distinguish very clearly between the cascade and backward cascade terms,
both in their intensity and in their mathematical form {192, 193]. This repre-
sentation is therefore to be linked to other statistical deterministic descrip-
tions of the backward cascade, which take into account only an average reduc-
tion of the effective viscosity, such as the Chollet-Lesieur effective viscosity
spectral model. ;

The main backward cascade models belonging to these two categories are
described in the following.

4.4.2 Deterministic Statistical Models

This section describes the deterministic models for the backward cascade.
These models, which are based on a modification of the subgrid viscosity
associated with the forward cascade process, are:

The spectral model based on the theories of turbulence proposed by Cha$<
nov (p.126). A negative subgrid viscosity is computed directly from the
EDQNM theory. No hypothesis is adopted concerning the spectrum shape
of the resolved scales, so that the spectral disequilibrium mechanisms can
be taken into account at the level of these scales, but the spectrum shape
of the subgrid scales is set arbitrarily. Also, the filter is assumed to be of
the sharp cutofl type. .
. The dynamic model with an equation for the subgrid kinetic energy
{p.127), to make sure this energy remains positive. This ensures that
the backward cascade process is represented physically, in the sense that
a limited quantity of energy can be restored to the resolved scales by.
the subgrid modes. However, this approach does not allow a correct
representation of the spectral distribution of the backward cascade. Only
the quantity of restored energy is controlled.

1.

Chasnov’s Spectral Model. Chasnov [54] adds a model for the backward
cascade, also based on an EDQNM analysis, to the cascade model already
described (see Sect. 4.3.1). The backward cascade process is represented de-
terministically by a negative effective viscosity term v, (k|kc), which is of the
form:

F~(klke, t)

Ve (k“cﬂat) = = 2]{;2E(k,t)

(4.233)

The stochastic forcing term is computed as:
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S
F(klke, ) = f dp f
ke p—k

in which x, y, and z are geometric factors associated with the triad (k, p,q),
and Oy, Is a relaxation time described in Appendix B. As is done when
computing the draining term (see Chasnov’s effective viscosity model in Sect.
4.3.1), we assume that the spectrum takes the Kolmogorov form beyond the
cutoff k.. To simplify the computations, formula (4.234) is not used for wave
numbers k. < p < 3ke. For the other wave numbers, we use the asymptotic
form
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This expression complete Chasnov’s spectral subgrid model which, though

quite close to the Kraichnan type effective viscosity models, makes it possible

to take into account the backward cascade effects that are dominant for very

small wave numbers.

Localized Dynamic Model with Energy Equation. The Germano-
Lilly dynamic procedure and the localized dynamic procedure lead to the
definition of subgrid models that raise numerical stability problems because
the model constant can take negative values over long time intervals, leading
to exponential growth of the disturbances.

This excessive duration of the dynamic constant in the negative state
corresponds to too large a return of kinetic energy toward the large scales
[47]. This phenomenon can be interpreted as a violation of the spectrum real-
izability constraint: when the backward cascade is over-estimated, a negative
kinetic energy is implicitly defined in the subgrid scales. A simple idea for
limiting the backward cascade consists in guaranteeing spectrum realizabil-
ity?*. The subgrid scales cannot then restore more energy than they contain.
To verify this constraint, local information is needed on the subgrid kinetic
energy, which naturally means defining this as an additional variable in the
simulation.

A localized dynamic model including an energy equation is proposed by
Ghosal et al. [122]. Similar models have been proposed independently by
‘Ronchi et al. [233,281] and Wong [348]. The subgrid model used is based on
the kinetic energy of the subgrid modes. Using the same notation as in Sect.
(4.3.3), we get: :

oy = 22 Qfgﬁz‘j ; (4.236)
Bis = 281/ 02555 » (4.237)
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1id to be realizable if E(k) > 0, Vk.

in which the energies Q,, and qszgS are defined as:

24 The spectrum E(k) )
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G = 5 (W0 — W) = S (4.239)

Germano’s identity (4.126) is written:

—_ 1 :

r = s 5Lt (4.240)
The model is completed by calculating qggs by means of an additional

evolution equation. We use the equation already used by Schumann, Horiuti,

and Yoshizawa, among others (see Sect. 4.3.2):
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in which the constants Cy and Cy are computed by a constrained localized
dynamic procedure described above. The dynamic constant Cy is computed
by a localized dynamic procedure.

This model ensures that the kinetic energy 2. will remain positive, i.e.
that the subgrid scale spectrum will be realizable. This property ensures that
the dynamic constant cannot remain negative too long and thereby destabilize
the simulation. However, finer analysis shows that, the realizability conditions
concerning the subgrid tensor 7 (see Sect. 3.3.5) are verified only on the

condition:
Ja \/ % '
2 <o L (4.242)
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where s, and s, are, respectively, the largest and smallest eigenvalues of
the strain rate tensor S. The model proposed therefore does not ensure the
realizability of the subgrid tensor.

The two constants C; and Cy are computed using an extension of the
constrained localized dynamic procedure. To do this, we express the kinetic

energy"@?gs evolution equation as:
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One variant of the Germano’s. relation relates the subgrid kinetic energy
flux f; to its analog at the level of the test filter Ro%

Fj—Fi=Z; = %0+ g%, + 0itis/2) — TP+ g +WT/2) ,  (4.244)
in which 7 is the resolved pressure.

To determine the constant Cy, we substitute in this relation the modeled
fluxes: )

c O
fi=CA, /g2, Frunl (4.245)
J
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i
which leads to:
"Z;=X;Cy ~Y;0y : (4.247)
in which
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Using the same method as was explained for the localized dynamic pro-
cedure, the constant Cs is evaluated by minimizing the quantity:

J@-xesim) (-xaim) e

By analogy with the preceding developments, the solution is obtained in
the form:

Ca(x) = {fc-z(x) +/7C62(X,.Y)02(Y)d3y] 3 (4.251)
+
in which:
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in which



130 4. Functional Modeling (Isotropic Case)
e
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This completes the computation of constant Cy. To determine the con-
stant Cp, we substitute (4.240) in (4.243) and get:

3;2“ Sa2 : 8292
Olsgs | Tliligs _ —E% + Uﬁi , (4.256)
ot 8587' ij c")mj&mj
in which ¥ is defined as:
= 0@ 1 8Ly 1(0Li 0L
G g . sgs) 2 o L i, OUjlii 5
LA A 2 Oz;0z; 2\ Ot T dz; x {2200

Applying the test filter to relation (4.241), we get:

.
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= 5, . (4.258)

By eliminating the term aq@;/ At between relations (4.256) and (4.258),

then replacing the quantity F; — j?; by its expression (4.244) and the quantity
T;; by its value as provided by the Germano identity, we get:

x=¢C1—9C1 . O (4.259)
in which
—~ = =  dp; 1 1 Ly
= 7Sy — Figbij — LigSij + ot — 5 DyLig + Suo—2t -
X = Ti5 4 — TigSig S + Be; 2Ding,+ 2V3Ij3:cj (4.260)
T [ '
6=(Q%)"*/3 | (4.261)
" 372 —
v=()" /A, (4.262)
and
pi = ;(P + Wii/2) ~ (B + wH/2) (4.263)

The symbol D; designates the material derivative d/dt + u;0/8z;. The
~constant C is computed by minimizing the quantity
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z f (x - ¢Cy + ipﬁ) (x — ¢Cy + 13(71) : (4.264)
by a constrained localized dynamic procedure, which is written:
Crlx) = [fol (=) + f Ko, (%, ¥)Ch (y}day} o (4265)
+

in which

1
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Ko, (x,y) = prempTe 4 (4.267)

in which .
K (x,y) = (x)p(y)Cx —y) (4.268)
K (6y) = $(0ty) [ Gl -x)Ga—a (4.269)

* which com pletes the computation of the constant Ci.

4.4.3 St_ochastic Models

~ Models belonging to this category are based on introducing a random forcing

term into the momentum equations. It should be noted that this random
character does not reflect the space-time correlation scales of the subgrid
fluctuations, which limits the physical validity of this approach and can raise
numerical stability problems. It does, however, obtain forcing term formula-
tions at low algorithmic cost. The models described here are:

1. Bertoglio’s model in the spectral space (p-132). The forcing term is con-

structued using a stochastic process, which is designed in order to induce
the desired backward energy flux and to possess a finite correlation time

scale. This is the only random model for the backward cascade deerived
in the spectral space.

2. Leith’s model (p.133). The forcing term is represented by an acceleration
vector deriving from a vector potential, whose amplitude is evaluated by
simple dimensional arguments, The backward cascade is completely de-
coupled from forward cascade here: there is no control on the realizability
of the subgrid scales.



